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On a Surface-Related Multi-Layer Shell Theory and its Application to Com-
pound Structures

The paper is concerned with the analytical formulation of a multi-layer surface-related shell theory and with the basic
concepts of the used contact formulation.

1. Single-Layer Shell Theory

For the description of the differential geometry of the undeformed shell continuum a parametrization by curvilinear,
convected coordinates Θα and the normal coordinate Θ3 is chosen as usual. With this parametrization every point
of the shell continuum is characterized by a position vector X = X + Θ3A3, wherefrom the covariant base vectors
Gα = Aα + Θ3A3,α =

(
δλ
α − Θ3 Bλ

α

)
Aλ and G3 = A3 with δλ

α as Kronecker symbol and Bλ
α as components

of the curvature tensor can be calculated by partial differentiation. Considering the surface-relation a domain
0 ≤ Θ3 ≤ H(Θα) for the coordinate Θ3 is defined with H as shell thickness.
The displacement field u of the shell continuum is approximated by the infinite series

u
(
Θ1, Θ2, Θ3

)
=

∞∑
l=0

lΩ lu
(
Θ1, Θ2

)
, (1)

where lu is the displacement field of the l-th director of the shell and 0u the displacement field of the reference
surface, cp. [1]. A chosen complete base function system lΩ =

(
Θ3
)l represents an ansatz in the thickness-direction.

If we introduce the displacement field (1) into the Green-Lagrange strain tensor E = Eij Gi ⊗Gj = 1
2 (u,i ·Gj +

u,j ·Gi + u,i · u,j)Gi ⊗ Gj , we get the components

Eαβ =
1
2

∞∑
l=0

(
laαβ lΩ − Θ3

lbαβ lΩ +
∞∑

k=0

( klcαβ kΩ lΩ)

)
(2)

E3α =
1
2

∞∑
l=0

(
ldα3 lΩ + leα3 lΩ,3 − Θ3

lfα3 lΩ,3 +
∞∑

k=0

( klgα3 kΩ lΩ,3)

)
(3)

E33 =
1
2

∞∑
l=0

(
lh33 lΩ,3 +

∞∑
k=0

( kli33 kΩ,3 lΩ,3)

)
(4)

of the strain tensor with the substrain measures

laαβ = lu,α ·Aβ+ lu,β ·Aα ldα3 = lu,α ·A3 klgα3 = ku,α · lu

lbαβ = Aλ ·
(
Bλ

β lu,α + Bλ
α lu,β

)
leα3 = lu ·Aα lh33 = 2 lu · A3

klcαβ = ku,α · lu,β lfα3 = Bλ
αAλ · lu kli33 = ku · lu .

(5)

Because of the nonlinearity and the chosen ansatz we get double sums in (2) to (4).
On the basis of the chosen kinematics it is possible to use three dimensional material laws which are based on the
Green-Lagrange strain tensor. In this theory a linear elastic, orthotropic material is used. It is characterized by
S = C : E, whereby S is the Second Piola-Kirchhoff stress tensor and C = Cijkl

m Mi ⊗ Mj ⊗ Mk ⊗ Ml

= CijklGi ⊗ Gj ⊗ Gk ⊗ Gl is the tensor of elasticity. The components Cijkl
m belong to an orthogonal material

coordinate system Mi characterizing the principle directions of the material behavior. To use the material law in
the internal virtual work, it is helpful to transform the tensor into the basis system Gi.

2. Multi-Layer Shell Theory

The multi-layer kinematics is derived analogically to the represented single-layer-kinematics. The displacement uL
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of each layer L is again approximated by the infinite series as before, where 0uL is the displacement vector of the
L-th layer reference surface. If we introduce the condition uL

(
Θ3

L = 0
)

= uL−1

(
Θ3

L−1 = HL−1

)
of a C0-continuity

of the displacement field across the layers, we get the displacement field

uL

(
Θα, Θ3

L

)
= 0u1 +

L−1∑
K=1

d∑
l=1

(HK)l
luK +

d∑
l=1

(
Θ3

L

)l
luL (6)

for the shell continuum of the L-th layer. Only the displacement 0u1 of the reference surface of the first layer
remains in the equation. The second part of the equation represents the deformation of the shell continuum between
the first and the L-th reference surface and the last part represents the deformation of the L-th layer itself.
If we drop the condition of C0-continuity, we get the displacement field

uL

(
Θα, Θ3

L

)
= 0uL (Θα) +

d∑
l=1

(
Θ3

L

)l
luL (Θα) . (7)

Different to the kinematics (6) it depends on the displacement field of the reference surface of the same layer.
To ensure the interconnection of the layers compound conditions are introduced analogously to the contact mechanics.
Therefore it is necessary to define the contact stress vector

SL = −SL−1 = Si3
L Ai = StL + Sn L , StL = Sα3

L Aα , SnL = Sn L A3 (8)

and the relative displacement field

∆uL = uL

(
Θ3

L = 0
)− uL−1

(
Θ3

L−1 = HL−1

)
= ∆ui LAi = ∆utL + ∆un L (9)

across the L-th and (L − 1)-th layer. The characteristic quantities for the decision between contact and uplifting
(delamination in normal direction) are the compound condition V and the gap function gn:

V = SnL − Snmax , gn = u3 L − u3 L−1 = ∆u3 L, (10)

where V ≤ 0 and gn = 0 at a Gauss point of the L-th layer in the case of contact and 0uL (Θα) is coupled with
the layer above. In the case of uplifting gn ≥ 0 and Sn L = 0 and the vector 0uL (Θα) supplies three degrees of
freedom. Thus the impenetrability of the layers is realized by the kinematical coupling of the layers.
The description of the tangential compound is very similar. The characteristic quantity for the decision between
sticking and sliding (delamination in tangential direction) are the compound condition R and the slip vector gt:

R = |StL| − Stmax , gt = ∆utL, (11)

where R ≤ 0 and |gt| = 0 for the L-th layer in the case of sticking in location of a Gauss point. All of the three
components of the vector 0uL (Θα) are coupled with the layer above. In the case of sliding the tangential stress
vector

StL (gt) = − gt
|gt|

(µ SnL + k (gt)) (12)

is a function of the slip vector gt (11). The first part results from Coulomb’s friction law and the second part
introduces an additional stiffness like adhesion. The tangential components of the vector 0uL (Θα) supply two
degrees of freedom and only its normal component is coupled with the layer below.
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